Análisis matemático

rama de la matemática

El análisis matemático es una rama de la matemática[1]​ que estudia los conjuntos numéricos (los números reales, los complejos) tanto del punto de vista algebraico como topológico, así como las funciones entre esos conjuntos y construcciones derivadas. Se empieza a desarrollar a partir del inicio de la formulación rigurosa de límite y estudia conceptos como la continuidad, la integración y la derivación de diversos tipos.[2]

El estudio del conjunto de Mandelbrot, que es un objeto fractal con autosimilaridad estadística, involucra diversas áreas del análisis matemático: el análisis de la convergencia, la teoría de la medida, la geometría y la teoría de la probabilidad y la estadística.
Conjuntos Numéricos

Una de las diferencias entre el álgebra y el análisis es que este último recurre a construcciones que involucran sucesiones de un número infinito de elementos, mientras que álgebra usualmente es finitista.

HistoriaEditar

 
Arquímedes usó el método de agotamiento para calcular el área dentro de un círculo al encontrar el área de polígonos regulares con más y más lados. Este fue un ejemplo temprano pero informal de un límite, uno de los conceptos más básicos en el análisis matemático.

En la Edad AntiguaEditar

Matemáticos griegos como Eudoxo de Cnidos y Arquímedes hicieron un uso informal de los conceptos de límite y convergencia cuando usaron el método exhaustivo para calcular el área y volumen de regiones y sólidos. De hecho, el número π fue aproximado usando el método exhaustivo.[3]​ En la India del siglo XII el matemático Bhaskara concibió elementos del cálculo diferencial, así como el concepto de lo que ahora conocemos como el teorema de Rolle.

Los primeros resultados del análisis estaban implícitamente presentes en los primeros días de la matemática griega antigua. Por ejemplo, una suma geométrica infinita está implícita en la paradoja de la dicotomía de Zenón. [4] Posteriormente, matemáticos griegos como Eudoxo y Arquímedes hicieron un uso más explícito, pero informal, de los conceptos de límites y convergencia cuando utilizaron el Método exhaustivo para calcular el área y el volumen de regiones y sólidos.[5] El uso explícito de infinitesimales aparece en El método de los teoremas mecánicos de Arquímedes , una obra redescubierta en el siglo XX. [6] En Asia, el matemático chino Liu Hui utilizó el método de agotamiento en el siglo III d. C. para encontrar el área de un círculo. [7] De la literatura jainista, parece que los hindúes estaban en posesión de las fórmulas para la suma de la aritmética y la geometría ya en el siglo IV aC [8] Ācārya Bhadrabāhu usa la suma de una suma de una serie geométrica en su Kalpasūtra en 433 aC [9] En la matemática hindú, casos particulares de la aritmética y se ha encontrado que ocurren implícitamente en la literatura védica desde el año 2000 a. C. En el siglo XIV, el matemático indio Madhava [4]​ desarrolló ideas fundamentales como la expansión de series infinitas, las series de potencias, series de Taylor y la aproximación racional de series infinitas. Además desarrolló las series de Taylor de funciones trigonométricas —seno, coseno, tangente— y estimó la magnitud de los errores de cálculo truncando estas series. También desarrolló fracciones continuas infinitas, integración término a término y la serie de potencias de pi. Sus discípulos de la Escuela de Kerala continuaron su trabajo hasta el siglo XVI.

En Europa, en el siglo siglo XVII, se establecieron los fundamentos modernos del análisis matemático, en el que Newton y Leibniz inventan el cálculo. Ahora sabemos que Newton desarrolló el cálculo infinitesimal unos diez años antes que Leibniz. Este último lo hizo en 1675 y publicó su obra en 1684, aproximadamente veinte años antes de que Newton se decidiera a hacer lo propio con sus trabajos. Newton había comunicado la novedad solamente a algunos pocos colegas suyos y de nada valieron las instigaciones de Halley para que Newton publicara sus trabajos más tempranamente. Esta actitud sirvió de base para crear una desagradable controversia por el padrinazgo de la idea; discusión que podría haber sido evitada si otro gran matemático, Fermat, no hubiera tenido también la inexplicable costumbre de no hacer públicos sus trabajos. En una carta de Fermat a Roberval, fechada el 22 de octubre de 1636, se hallan claramente descritos tanto la geometría analítica[5]​ como el análisis matemático.[6]Descartes también desarrolló la geometría analítica de manera independiente. En dicho siglo y en el siglo XVIII, ciertos temas sobre el análisis como el cálculo de variaciones, las ecuaciones diferenciales y ecuaciones en derivadas parciales, el análisis de Fourier y las funciones generadoras fueron desarrolladas principalmente para un trabajo de aplicación. Las técnicas del Cálculo fueron aplicadas con éxito en la aproximación de problemas discretos mediante los continuos.

En la Edad MediaEditar

En el siglo V, Zu Chongzhi estableció un método que más tarde se llamaría Principio de Cavalieri para hallar el volumen de una esfera.[10] El matemático indio Bhaskara II dio ejemplos de la derivada y utilizó lo que ahora se conoce como teorema de Rolle en el siglo XII.[11].

En el siglo XIV, Madhava de Sangamagrama desarrolló expansiones de series infinitas, como la serie de potencias y la serie de Taylor, de funciones como el seno, el coseno, la tangente y la arctangente[12] Junto con su desarrollo de la serie de Taylor de las funciones trigonométricas, también estimó la magnitud de los términos de error creados al truncar estas series y dio una aproximación racional de una serie infinita. Sus seguidores en la Escuela de Astronomía y Matemáticas de Kerala ampliaron sus trabajos hasta el siglo XVI.

En la Edad ModernaEditar

 
Aproximación de una función «onda cuadrada» discontinua mediante una serie de funciones trigonométricas continuas y diferenciables.

FundamentosEditar

Los fundamentos modernos del análisis matemático se establecieron en la Europa del siglo XVII, cuando Descartes y Fermat desarrollaron de forma independiente la geometría analítica, precursora del cálculo moderno. El método de adecuación de Fermat le permitió determinar los máximos y mínimos de las funciones y las tangentes de las curvas.[13] La publicación de La Géométrie de Descartes en 1637, que introdujo el sistema de coordenadas cartesianas, se considera el establecimiento del análisis matemático. Unas décadas más tarde, Newton y Leibniz desarrollaron de forma independiente el cálculo infinitesimal, que creció, con el estímulo del trabajo aplicado que continuó a lo largo del siglo XVIII, en temas de análisis como el cálculo de variaciones, las ecuaciones diferenciales ordinarias y parciales, el análisis de Fourier y las funciones generadoras. Durante este periodo, las técnicas de cálculo se aplicaron para aproximar los problemas discretos a los continuos.

ModernizaciónEditar

A todo lo largo del siglo XVIII la definición del concepto de función estuvo sujeta a debate entre los matemáticos. En el siglo XIX, Cauchy fue el primero que estableció el cálculo sobre unos firmes fundamentos lógicos mediante el uso del concepto de sucesión de Cauchy. También inició la teoría formal del análisis complejo. Poisson, Liouville, Fourier y otros, estudiaron ecuaciones en derivadas parciales y el análisis armónico.

A mediados de dicho siglo, Riemann introduce su teoría de la integración. En el último tercio del siglo XIX Weierstrass lleva a la aritmetización del análisis, ya que pensaba que el razonamiento geométrico era engañoso por naturaleza, e introduce la definición ε - δ de límite. Entonces los matemáticos empezaron a preguntarse si no estarían asumiendo la existencia de cierto continuo de números reales sin probar su existencia. Dedekind entonces construye los números reales mediante las cortaduras de Dedekind. Sobre la misma época, los intentos de refinar los teoremas de integración de Riemann llevaron hacia el estudio del «tamaño» de los conjuntos de discontinuidad de funciones reales.

También, funciones «monstruos» (funciones continuas en ninguna parte, funciones continuas pero no diferenciables en ningún punto, Curva que llena el espacio, Curva de Peano) comenzaron a surgir. En este contexto, Jordan desarrolló su teoría de medida, Cantor lo hizo con lo que ahora se llama teoría de conjuntos y Baire prueba el teorema de la categoría de Baire. A principios del siglo XX, el cálculo se formaliza usando la teoría de conjuntos. Lebesgue resuelve el problema de la medida y Hilbert introduce los espacios de Hilbert para resolver ecuaciones integrales. La idea de espacios vectoriales normados estuvo en ciernes y en los años 1920 Banach crea el análisis funcional.

SubdivisionesEditar

Se ha discutido mucho cuántas y qué ramas compondrían el análisis, ya que a medida que la disciplina se desarrolla, diversas ramas que previamente eran independientes acaban formando parte de un mismo cuerpo y en ocasiones parecen emerger ramas independientes. El análisis matemático incluye los siguientes campos:

Véase tambiénEditar

ReferenciasEditar

  1. «Análisis matemático - EcuRed». www.ecured.cu. Consultado el 5 de septiembre de 2020. 
  2. Esquema planteado en Análisis matemático de Tom Apostol
  3. «El método de exhausción». 
  4. «Cronología de las matemáticas.». Consultado el 10 de septiembre de 2020.. 
  5. Existe un ensayo escrito por Fermat en 1629 en el que crea la geometría analítica, pero no fue editado hasta 1669, treinta años después de la aparición de la Géométrie de Descartes.
  6. Capítulo VII: Este Mundo Fluente, Tobías Dantzig, "El Número Lenguaje de la Ciencia, Editorial Hobbs Sudamericana S. A., Buenos Aires, 1971, página 143.

BibliografíaEditar

  • Apostol, Tom M. (1960). Análisis matemático: Introducción moderna al cálculo superior. Reverté. ISBN 84-291-5000-5. 
  • Rey Pastor, Julio (1985). Análisis matemático: Teoría de ecuaciones; cálculo infinitesimal de una variable. Kapelusz. ISBN 950-13-3301-9. 
  • Gardner Bartle, Robert (1982). Introducción al análisis matemático. Limusa. ISBN 968-18-0997-1. 
  • Stewart, James (2002). Cálculo Multivariable. Thomson Learning. ISBN 978-970-686-652-3.

Enlaces externosEditar