Abrir menú principal

Geología

ciencia que estudia la composición y estructura interna de la Tierra
Provincias geológicas de la Tierra (USGS)
Corteza oceánica
(según su edad)      0-20 Ma      20-65 Ma      >65 Ma
Corteza continental      Escudos o cratones antiguos      Plataformas (escudos con cobertera sedimentaria)      Cadenas orogénicas      Cuencas tecto-sedimentarias      Provincias ígneas      Corteza adelgazada (por extensión cortical)

La geología (del griego γῆ /guê/, ‘Tierra’, y -λογία /-loguía/, ‘tratado’)[1][2]​ es la ciencia natural que estudia la composición y estructura tanto interna como superficial del planeta Tierra, y los procesos por los cuales ha ido evolucionando a lo largo del tiempo geológico.[3]

La misma comprende un conjunto de geociencias, así conocidas actualmente desde el punto de vista de su pedagogía, desarrollo y aplicación profesional. Ofrece testimonios esenciales para comprender la tectónica de placas, la historia de la vida a través de la paleontología, y cómo fue la evolución de ésta, además de los climas del pasado. En la actualidad la geología tiene una importancia fundamental en la exploración de yacimientos minerales (minería) y de hidrocarburos (petróleo y gas natural), y la evaluación de recursos hídricos subterráneos (hidrogeología). También tiene importancia fundamental en la prevención y entendimiento de fenómenos naturales como remoción de masas en general, terremotos, tsunamis, erupciones volcánicas, entre otros. Aporta conocimientos clave en la solución de problemas de contaminación medioambiental, y provee información sobre los cambios climáticos del pasado. Juega también un rol importante en la geotecnia y la ingeniería civil.

La geología incluye ramas como la geofísica, la tectónica, la geología estructural, la estratigrafía, la geología histórica, la hidrología, la meteorología, la geomorfología, la oceanografía y la edafología.

Aunque la minería y las piedras preciosas han sido objeto del interés humano a lo largo de la historia de la civilización, su desarrollo científico dentro de la ciencia de la geología no ocurrió hasta el siglo XVIII. El estudio de la Tierra, en especial la paleontología, floreció en el siglo XIX, y el crecimiento de otras disciplinas, como la geofísica con la teoría de las placas tectónicas en los años 60, que tuvo un impacto sobre las ciencias de la Tierra similar a la teoría de la evolución sobre la biología.

Por extensión se aplica al estudio del resto de los cuerpos y materia del sistema solar (astrogeología o geología planetaria).

Índice

HistoriaEditar

 
Frontispicio de Principios de geología de Charles Lyell, 1830.

La historia de la geología estudia el desarrollo de la geología como ciencia a lo largo de la historia. El estudio de la materia física de la Tierra se remonta a la Grecia antigua, cuando Teofrasto (372-287 a. C.) escribió la obra Peri lithon (Sobre las rocas). En la época romana, Plinio el Viejo escribió en detalle de los muchos minerales y metales que se utilizan en la práctica, y señaló correctamente el origen del ámbar.

Algunos estudiosos modernos, como Fielding H. Garrison, son de la opinión de que la geología moderna comenzó en el mundo islámico medieval. Abu al-Rayhan al-Biruni (973-1048) fue uno de los primeros geólogos musulmanes, cuyos trabajos incluían los primeros escritos sobre la geología de la India, la hipótesis de que el subcontinente indio fue una vez un mar. El erudito islámico Avicena (981-1037) propuso una explicación detallada de la formación de montañas, el origen de los terremotos, y otros temas centrales de la geología moderna, que proporcionan una base esencial para el posterior desarrollo de esta ciencia. En China, el erudito Shen Kuo (1031-1095) formuló una hipótesis para el proceso de formación de la Tierra, basado en su observación de las conchas de los animales fósiles en un estrato geológico en una montaña a cientos de kilómetros del mar, logró inferir que la Tierra se formó por la erosión de las montañas y por la deposición de sedimentos.

Durante los primeros siglos de exploración europea[4]​ se inició una etapa de conocimiento mucho más detallado de los continentes y océanos. Los exploradores españoles y portugueses acumularon, por ejemplo, un detallado conocimiento del campo magnético terrestre y en 1596, Abraham Ortelius vislumbra ya la hipótesis de la deriva continental, precursora de la teoría de la tectónica de placas, comparando las costas de Sudamérica y África.[5]

A Nicolás Steno (1638-1686) se le atribuye el principio de la superposición de estratos, el principio de la horizontalidad original, y el principio de la continuidad lateral: tres principios que definen la estratigrafía.

Richard de Bury (1287-1345), en un libro titulado Philobiblon o Filobiblión (El amor a los libros), utilizó por primera vez el término geologia, o ciencia terrenal. Sin embargo, no parece que el término fuese usado para definir una ciencia cuyo objeto de estudio fuese la Tierra, sino más bien el término ciencia terrenal aparece por oposición al término teología u otros términos con connotaciones espirituales.

El naturalista italiano Ulisse Aldovrandi (1522-1605) usó por primera vez la palabra geología con un sentido próximo al que tiene actualmente, en un manuscrito encontrado después de su muerte. Consideró la geología como la ciencia que se ocupa del estudio de los fósiles, pero hay que tener en cuenta que el término fósil incluía también en aquellos tiempos los minerales y las rocas. Posteriormente, en 1657 aparece un trabajo de Mickel Pederson Eschilt, escrito en danés, y titulado Geologia Norwegica, en el que estudió un terremoto que afectó a la parte sur de Noruega. En 1661, Robert Lovell (1630-1690), escribió una Universal History of Minerals (Historia Universal de los Minerales), una de cuyas partes denominó con el nombre latinizado de Geologia. Después esta palabra fue usada por Fabrizio Sessa en 1687, en su trabajo titulado "Geologia -nella quale se spiega che la Terre e non le Stelle influisca né suaoi corpi terrestre", afirmando que "la geología es verdaderamente la que habla de la Tierra y de sus influencias". Erasmus Warren, en 1690, publicó un libro titulado "Geologia or a Discourse concerning the Earth before the Deluge" ("Geología, o un discurso concerniente a la Tierra antes del diluvio"); no obstante, el término "Geología" aparece sólo en el título de la obra, no encontrándose después en el texto. La palabra Geología fue establecida definitivamente como un término de uso general por Jean-André Deluc en 1778 y Horace-Bénédict de Saussure en 1779.

William Smith (1769-1839) dibujó algunos de los primeros mapas geológicos y comenzó el proceso de ordenar cronológicamente los estratos rocosos mediante el estudio de los fósiles contenidos en ellos.

James Hutton es a menudo visto como el primer geólogo moderno. En 1785 presentó un documento titulado Teoría de la Tierra para la Sociedad Real de Edimburgo. En su ponencia, explicó su teoría de que la Tierra debía de ser mucho más antigua de lo que se suponía, con el fin de permitir el tiempo suficiente para que las montañas puedan haber sido erosionadas y para que los sedimentos logren formar nuevas rocas en el fondo del mar, y estos a su vez afloren a la superficie para poder convertirse en tierra seca. Hutton publicó una versión de dos volúmenes de sus ideas en 1795.

Los seguidores de Hutton fueron conocidos como plutonistas porque creían que algunas rocas se formaron por volcanismo, que es la deposición de lava de los volcanes, a diferencia de la neptunistas, quienes creían que todas las rocas se habían formado en el interior de un gran océano cuyo nivel disminuyó gradualmente con el tiempo.

Charles Lyell publicó su famoso libro Principios de geología en 1830. El libro, que influyó en el pensamiento de Charles Darwin, promovió con éxito la doctrina del uniformismo. Esta teoría afirma que los procesos geológicos que han ocurrido a lo largo de la historia de la Tierra, aún se están produciendo en la actualidad. Por el contrario, el catastrofismo es la teoría que indica que las características de la Tierra se formaron en diferentes eventos individuales, catastróficos, y que la tierra se mantuvo sin cambios a partir de entonces. Aunque Hutton creyó en el uniformismo, la idea no fue ampliamente aceptada en el momento.

Gran parte de la geología del siglo XIX giró en torno a la cuestión de la edad exacta de la Tierra. Las estimaciones variaban enormemente de unos pocos cientos de miles, a miles de millones de años. En el siglo XX, la datación radiométrica permitió que la edad de la Tierra se estimase en aproximadamente dos mil millones de años. La conciencia de esta enorme cantidad de tiempo abrió la puerta a nuevas teorías sobre los procesos que dieron forma al planeta. Hoy en día se sabe que la Tierra tiene aproximadamente 4500 millones de años.

Los avances más importantes en la geología del siglo XX han sido el desarrollo de la teoría de la tectónica de placas en la década de 1960, y el refinamiento de las estimaciones de la edad del planeta. La teoría de la tectónica de placas surgió a partir de dos observaciones geológicas por separado: La expansión del fondo oceánico y la deriva continental. La teoría revolucionó completamente las ciencias de la Tierra.

Tiempo geológicoEditar

 
Diagrama de la escala de tiempo geológico.

La escala del tiempo geológico abarca toda la historia de la Tierra. Se encuentra enmarcada a lo largo de aproximadamente 4.567 millones de años,[6]​ en que se dataron los primeros materiales acrecionados del sistema solar, dando la edad de la tierra en 4.54 Ga, al comienzo del Eon Hádico (no oficialmente reconocido). Al final de la escala, se toma el día presente incluido en el Cuaternario Holoceno.

Hitos importantesEditar

Ramas de la geologíaEditar

CristalografíaEditar

 
Cristales de sulfato de cobre (II). Estos cristales tienen una estructura cristalina triclínica.
 
Cristales de cuarzo de Minas Gerais, Brasil.

La cristalografía es la ciencia que estudia los cristales. La mayoría de los minerales, compuestos orgánicos y numerosos materiales, adoptan estructuras cristalinas cuando se han producido las condiciones favorables. La cristalografía incluye el estudio del crecimiento y la geometría de estos cristales, la estructura que presentan las partículas constituyentes del cristal, y su composición química.[17]​ Los estudios de la estructura se apoyan fuertemente en el análisis de los patrones de difracción que surgen de una muestra cristalina al irradiarla con un haz de rayos X, neutrones o electrones. La estructura cristalina también se puede estudiar por medio de microscopía electrónica. Uno de sus objetivos es conocer la posición relativa de los átomos, iones y moléculas que los constituyen y sus patrones de repetición o empaquetamiento, es decir, su estructura tridimensional.

La disposición de los átomos en un cristal se puede conocer por difracción de rayos X, de neutrones o electrones. La química cristalográfica estudia la relación entre la composición química, la disposición de los átomos y las fuerzas de enlace entre estos. Esta relación determina propiedades físicas y químicas de los minerales.

Cuando las condiciones son favorables, cada elemento o compuesto químico tiende a cristalizarse en una forma definida y característica. Así, la sal tiende a formar cristales cúbicos, mientras que el granate, que a veces forma también cubos, se encuentra con más frecuencia en dodecaedros o triaquisoctaedros. A pesar de sus diferentes formas de cristalización, la sal y el granate cristalizan siempre en la misma clase y sistema.

En teoría son posibles treinta y dos clases cristalinas, pero solo una docena incluye prácticamente a todos los minerales comunes y algunas clases nunca se han observado. Estas treinta y dos clases se agrupan en seis sistemas cristalinos, caracterizados por la longitud y posición de sus ejes. Los minerales de cada sistema comparten algunas características de simetría y forma cristalina, así como muchas propiedades ópticas importantes.

La cristalografía es una técnica importante en varias disciplinas científicas, como la química, física y biología y tiene numerosas aplicaciones prácticas en medicina, mineralogía y desarrollo de nuevos materiales. Por su papel en «hacer frente a desafíos como las enfermedades y los problemas ambientales», la UNESCO declaró el 2014 como el Año Internacional de la Cristalografía.[18]

EspeleologíaEditar

 
Espeleólogo a la entrada de una cueva.

La espeleología (del griego σπηλαιου spelaiou que significa cueva y -logía, tratado) es la ciencia que estudia la morfología y formaciones geológicas (espeleotemas) de las cavidades naturales del subsuelo. En ella se investigan, cartografían y catalogan todo tipo de descubrimientos en cuevas. Forma parte de la geomorfología y sirve de apoyo a la hidrogeología.

Se pueden distinguir varios tipos de espeleología, según el tipo de cavidad en que se desarrollan. La geología con sus subdivisiones es considerada una de las principales ciencias del karst.[19]

La espeleología oferta multitud de atractivos, tanto lúdicos como científicos a diversos niveles, lo que hace de ella una actividad muy completa. Los espeleólogos intervienen asimismo en el rescate en cavidades, denominado espeleosocorro. Se considera a menudo un deporte, como anunciaba Noel Llopis Lladó en 1954, que la auténtica espeleología peligraba ya que existía un «confusionismo» entre el deporte (espeleismo) y la ciencia (espeleología).

Se ha propuesto que aquellas ocasiones en que su práctica se asemeja más bien a un deporte, sería más apropiado denominarla espeleísmo; aunque, no deja de tener sus orígenes en una ciencia que estudia la morfología de las cavidades naturales del subsuelo. Se investiga, se topografía y se catalogan todo tipo de descubrimientos subterráneos. Es más, la espeleología es una ciencia en la que se hallan implicadas varias otras: la formación y las características de las cavidades interesan a los geógrafos y geólogos; los cursos subterráneos de agua a los hidrólogos; la fauna (más variada y numerosa de lo que se cree) a los bioespeleólogos; los vestigios del hombre prehistórico a los antropólogos y arqueólogos y los fósiles de animales a los paleontólogos, etc.

Édouard Alfred Martel es considerado el padre de la espeleología moderna, inició las primeras exploraciones científicas y en 1895 fundó la Sociedad Espeleológica de Francia.

EstratigrafíaEditar

 
Estratos policromáticos en la Quebrada de Cafayate, provincia de Salta, Argentina.
La estratigrafía es la rama de la geología que trata del estudio e interpretación de las rocas sedimentarias, metamórficas y volcánicas estratificadas, y de la identificación, descripción, secuencia, tanto vertical como horizontal, cartografía y correlación de las unidades estratificadas de rocas.[20]

Geología del petróleoEditar

 
Sección geológica de las cuencas del Canal y Weald (sur de Gran Bretaña), mostrando estructuras apropiadas para la prospección de petróleo.

La geología del petróleo es la rama de la geología que estudia todos los aspectos relacionados con la formación de yacimientos petrolíferos y su prospección. Entre sus objetivos están la localización de posibles yacimientos, caracterizar su geometría espacial y la estimación de sus reservas potenciales.

En la geología del petróleo se combinan diversos métodos o técnicas exploratorias para seleccionar las mejores oportunidades o plays para encontrar hidrocarburos (petróleo y gas natural).

El desarrollo de la geología del petróleo tuvo lugar principalmente entre las décadas de los años 1970 y 1980, cuando las empresas del petróleo crearon grandes departamentos de geología y destinaron importantes recursos a la exploración. Los geólogos de esta industria aportaron a su vez nuevos avances a la Geología, desarrollando, por ejemplo, nuevos tipos de análisis estratigráfico (estratigrafía secuencial, microfacies, quimioestratigrafía, etcétera) y geofísicos.

Geología económicaEditar

La geología económica es la rama de la geología que estudia las rocas con el fin de encontrar depósitos minerales que se puedan ser explotar con un beneficio práctico o económico. El geólogo económico se encarga de hacer todos los estudios necesarios para poder encontrar las rocas o minerales que puedan ser potencialmente explotados. La explotación de estos recursos se conoce como minería.

La búsqueda de dichas materias ha dado origen a viajes de descubrimiento y colonización de nuevas tierras; su propiedad ha determinado la supremacía comercial o política, y ha sido causa de luchas y guerras. En la búsqueda de estas sustancias minerales se ha ido acumulando gradualmente un caudal de conocimientos sobre su distribución, carácter y lugares donde se encuentran, así como sobre sus usos, y este caudal de conocimientos ha llevado a la formación de teorías sobre su origen.

Los recursos minerales tienen una gran importancia en la vida diaria del hombre actual, ya que estos proveen muchos elementos básicos que ayudan a hacer más fácil la vida moderna y que nos permiten tener calefacción, electricidad, llenar el depósito de combustible de nuestros vehículos, hacer abonos para fertilizar nuestras tierras, obtener materiales para construir viviendas y edificios, producir medicamentos, accesorios, etc.

Los estudios de geología económica o de prospección, se hacen mediante la evaluación geológica de la zona de interés y se complementan con estudios asociados de otras ramas de la geología como la geoquímica, geología estructural, geofísica, sedimentologia, que nos permiten conocer más a fondo el potencial mineralógico y hacer la delimitación y cuantificación de la fuente de material.

Para que un depósito se pueda considerar económico, debe haber una disponibilidad suficiente de material en el mismo para que sea rentable o justificable su explotación, ya que la inversión necesaria para el desarrollo minero es generalmente considerable.

La «ley» de un depósito metálico es la relación de cantidad de roca que se requiere para producir una unidad del mineral; por ejemplo, una mina de oro con una ley de 1 g/t requiere de la extracción de una tonelada de mineral para obtener 1 gramo de oro. La rentabilidad del depósito mineral es fuertemente dependiente del precio del mineral o elemento extraído y los costos de producción. En la actualidad, con altos precios de la mayoría de los metales, muchas minas o proyectos que no eran rentables han sido puestos en producción nuevamente.

Aunque normalmente se hace hincapié en yacimientos o depósitos de minerales metálicos (oro, cobre, aluminio, etc.) los depósitos de minerales no-metálicos son de gran importancia en el desarrollo de los países. Elementos como el petróleo, calizas, gravas y otros materiales de construcción son de gran importancia, especialmente en países en vías de desarrollo.

Los depósitos minerales no son infinitos y por lo tanto su explotación se debe hacer en forma racional dentro de un esquema de sostenibilidad para que no se agoten antes de tiempo y evitar que futuras generaciones queden desprovistas de estos recursos. Este aspecto es muy importante para los depósitos de agua potable, ya que este es un recurso vital y cada vez más escaso por la sobreexplotación, la contaminación y otras causas externas como las quemas y la deforestación.

Dentro de la geología económica también se puede considerar la prospección petrolífera, pero esta se discute más a fondo en la sección de geología del petróleo.

Geología estructuralEditar

 
Intrusión de rocas ígneas.
La geología estructural es la rama de la geología que se dedica a estudiar la corteza terrestre, sus estructuras y su relación en las rocas que las contienen. Estudia la geometría de las formaciones rocosas y la posición en que aparecen en superficie. Interpreta y entiende el comportamiento de la corteza terrestre ante los esfuerzos tectónicos y su relación espacial, determinando la deformación que se produce, y la geometría subsuperficial de estas estructuras.

GemologíaEditar

 
Gemas de diverso tipo: 1 Turquesa, 2 Hematita, 3 Crisocola, 4 Ojo de tigre, 5 Cuarzo, 6 Turmalina, 7 Cornalina, 8 Pirita, 9 Suglita, 10 Malaquita, 11 Cuarzo rosa, 12 Obsidiana, 13 Rubí, 14 Ágata muscínea, 15 Jaspe, 16 Amatista, 17 Ágata azul, 18 Lapislázuli

La gemología es la rama de la mineralogía y de la geología que se dedica al estudio, identificación, análisis y evaluación de las piedras preciosas o gemas.[21]​ Una tarea central de la gemología es poner a disposición métodos y procedimientos rigurosos que permitan distinguir las gemas naturales de sus imitaciones y versiones sintéticas. Entre estos procedimientos se cuentan las mediciones realizadas con distintos instrumentos y aparatos (por ejemplo, mediciones cristalográficas y fotométricas, microscopía, espectroscopía, análisis de difracción por rayos X, etc.).[22]​ Se trata, por tanto, de una disciplina científica que no guarda ninguna relación con las prácticas esotéricas que asignan significados o supuestas propiedades terapéuticas a las gemas.

Debido al valor de las piezas estudiadas, prescinde de aquellos métodos mineralógicos que requieren de la extracción de muestras y utiliza solo aquellos procedimientos que las conservan intactas.

El gemólogo debe conocer varias disciplinas como: cristalografía, óptica, matemáticas, cristaloquímica, química analítica, síntesis e imitación de gemas, entre otras.

Se estudian la composición, propiedades físicas, origen y yacimientos, los tratamientos de diversa naturaleza, los tipos de talla que realzan la belleza de las gemas, los minerales sintéticos y características así como de las propiedades de estos materiales que imitan a las gemas naturales. Algunas de las aplicaciones frecuentes son la tasación y la peritación.

Geología históricaEditar

 
Diagrama de la escala de tiempo geológico.

La geología histórica es la rama de la geología que estudia las transformaciones que ha experimentado la Tierra desde su formación, hace unos 4570 millones de años,[23]​ hasta el presente.

Para establecer un marco temporal relativo, los geólogos han ordenado las rocas en una secuencia continua de unidades cronoestratigráficas a escala planetaria, dividida en eonotemas, eratemas, sistemas, series y pisos, basada en la estratigrafía, esto es, en el estudio e interpretación de los estratos, apoyada en los grandes eventos biológicos y geológicos. Por ejemplo, la transición entre Pérmico y Triásico se establece en función de un evento de extinción masiva. Las divisiones anteriores tienen sus equivalentes temporales, una a una, en una escala de unidades geocronológicas: eones, eras, períodos, épocas y edades respectivamente. Las dataciones por radioisótopos han permitido la datación absoluta (años) de la mayoría de las divisiones establecidas, definiendo las unidades geocronométricas equivalentes. Las etapas de la Tierra anteriores al Fanerozoico, de las que no se dispone de registro fósil adecuado, son definidas cronométricamente, esto es, fijando un valor de tiempo absoluto.

AstrogeologíaEditar

 
Valle Marineris, gran cañón en la superficie de Marte, con 4500 km de largo y 11 km de profundidad.

La astrogeología, también llamada geología planetaria o exogeología, es la ciencia que estudia la geología de los cuerpos celestes —planetas y sus lunas, asteroides, cometas y meteoritos.

Los científicos astrogeólogos han acuñado el término cuerpo planetario para designar a todos los cuerpos que cumplan con los siguientes criterios:

  1. Ser lo suficientemente masivos como para que la gravedad haga efecto y el cuerpo sea esférico
  2. Orbitar alrededor de una estrella o remanente de ésta (agujeros negros, estrellas de neutrones, enanas blancas)
  3. Haber limpiado la vecindad de su órbita; es decir una dominancia orbital, significando que es el cuerpo dominante y que no hay otros cuerpos de tamaño comparable con excepción de objetos bajo su influencia gravitacional.

Plutón sólo cumple dos de estos tres criterios y por eso es considerado «planeta enano».[24][25]​ Esta definición abarca tanto a planetas como a satélites, que son geológicamente iguales.

Eugene Shoemaker, quien introdujo la rama de astrogeología en el Servicio Geológico de los Estados Unidos, realizó importantes contribuciones en el campo y en el estudio de los cráteres de impacto, ciencia lunar, asteroides y cometas.

El envío de sondas espaciales a los diversos cuerpos planetarios de nuestro sistema solar a partir de los años sesenta está proporcionando valiosos datos, de cuyo análisis se deriva una revolución en el conocimiento geológico de nuestro propio planeta, acerca de cómo se formó y cual será el futuro que le espera. Así, la finalidad de la astrogeología es conocer la evolución de los planetas.

Geología regionalEditar

La geología regional es la rama de geología que estudia la configuración geológica de cada continente, país, región o de zonas determinadas de la Tierra.

GeomorfologíaEditar

 
La geomorfología estudia el origen y el futuro de geoformas como la del Árbol de Piedra así como la de los cerros detrás en el Altiplano andino.

La geomorfología (del griego Γηος [gueos] ‘Tierra’, μορφή [morfé] ‘forma’, y λόγος [logos] ‘estudio’, ‘conocimiento’) es una rama de la geografía física y de la geología[26]​ que tiene como objetivo el estudio de las formas de la superficie terrestre enfocado a describir, entender su génesis y su actual comportamiento.

Se puede subdividir, a su vez, en tres vertientes: geología estructural que trata de la caracterización y génesis de las “formas del relieve”, como unidades de estudio. La geología dinámica, sobre la caracterización y explicación de los procesos de erosión y meteorización por los principales agentes (gravedad y agua). Y la geología climática, sobre la influencia del clima sobre la morfogénesis (dominios morfoclimáticos).

Por su campo de estudio, la geomorfología tiene vinculaciones con otras ciencias. Uno de los modelos geomorfológicos más popularizados explica que las formas de la superficie terrestre son el resultado de un balance dinámico —que evoluciona en el tiempo— entre procesos constructivos y destructivos, dinámica que se conoce de manera genérica como ciclo geográfico.

La geomorfología se centra en el estudio de las formas del relieve, pero dado que éstas son el resultado de la dinámica litosférica que en general integra, como insumos, conocimientos de otras ciencias de la Tierra, tales como la climatología, la hidrografía, la pedología, la glaciología, y también de otras ciencias, para abarcar la incidencia de fenómenos biológicos, geológicos y antrópicos, en el relieve. La geomorfología es una ciencia relacionada tanto con la geografía física como con la geografía humana (por causa de los riesgos naturales y la relación hombre medio) y con la geografía matemática (por causa de la topografía).

GeoquímicaEditar

 
Mapa del cambio estimado del pH superficial de los océanos desde el siglo XVIII al siglo XX

La geoquímica es la ciencia —una especialidad de las ciencias de la Tierra— que utiliza las herramientas y los principios de la química y de la geología para explicar los mecanismos detrás de los principales sistemas geológicos como la corteza terrestre y sus océanos.[27]:1 El reino de la geoquímica se ha extendido más allá de la Tierra, abarcando todo el sistema solar[28]​ y ha hecho importantes contribuciones a la comprensión de una serie de procesos que incluyen la convección del manto, la formación de planetas y los orígenes del granito y del basalto.[27]:1

Estudia la composición y dinámica de los elementos químicos en la Tierra, determinando su abundancia absoluta y relativa y su distribución. También estudia la migración de esos elementos entre las diferentes geósferaslitósfera, hidrósfera, atmósfera y biósfera— utilizando como principales evidencias las transformaciones de las rocas y de los minerales que componen la corteza terrestre, con el propósito de establecer leyes sobre las que se base su distribución.

Los principales elementos químicos en función de su abundancia, denominados también como «elementos mayoritarios» en una escala de mayor a menor, son: oxígeno, silicio, aluminio, hierro, calcio, sodio, potasio y magnesio.

GeofísicaEditar

 
Edad de la corteza oceánica. La mayor parte de la información proviene de las secuencias de inversiones de polaridad magnética registradas en el sustrato marino calibradas con dataciones absolutas.

La geofísica es la ciencia que estudia la Tierra desde el punto de vista de la física. Su objeto de estudio abarca todos los fenómenos relacionados con la estructura, condiciones físicas e historia evolutiva de la Tierra. Al ser una disciplina principalmente experimental, usa para su estudio métodos cuantitativos físicos como la física de reflexión y refracción de ondas mecánicas, y una serie de métodos basados en la medida de la gravedad, de campos electromagnéticos, magnéticos o eléctricos y de fenómenos radiactivos. En algunos casos dichos métodos aprovechan campos o fenómenos naturales (gravedad, magnetismo terrestre, mareas, terremotos, tsunamis, etc.) y en otros son inducidos por el hombre (campos eléctricos y fenómenos sísmicos).

Dentro de la geofísica se distinguen dos grandes ramas: la geofísica interna y la geofísica externa.

HidrogeologíaEditar

 
Sección geológica explicando un pozo artesiano (ca. 1885).

La hidrogeología es la rama de la geología aplicada, dentro de la geodinámica externa, que estudia las aguas subterráneas en lo relacionado con su origen, su circulación, sus condicionamientos geológicos, su interacción con los suelos, rocas y humedales (freatogénicos); su estado (líquido, sólido y gaseoso) y propiedades (físicas, químicas, bacteriológicas y radiactivas) y su captación.[29]

Los estudios hidrogeológicos son de especial interés no solo para la provisión de agua a la población sino también para entender el ciclo vital de ciertos elementos químicos, como así también para evaluar el ciclo de las sustancias contaminantes, su movilidad, dispersión y la manera en que afectan al medio ambiente, por lo que esta especialidad se ha convertido en una ciencia básica para la evaluación de sistemas ambientales complejos.

El abordaje de las cuestiones hidrogeológicas abarcan: la evaluación de las condiciones climáticas de una región, su régimen pluviométrico, la composición química del agua, las características de las rocas como permeabilidad, porosidad, fisuración, su composición química, los rasgos geológicos y geotectónicos, es así que la investigación hidrogeológica implica, entre otras, tres temáticas principales:

  • el estudio de las relaciones entre la geología, las cuevas y las aguas subterráneas;
  • el estudio de los procesos que rigen los movimientos de las aguas subterráneas en el interior de las rocas y de los sedimentos;
  • el estudio de la química de las aguas subterráneas (hidroquímica e hidrogeoquímica).
La hidrogeología es una de las principales disciplinas estudiadas en las ciencias del karst, objeto de la espeleología.[30]

MineralogíaEditar

 
Exposición de minerales

La mineralogía es la rama de la geología que estudia las propiedades físicas y químicas de los minerales que se encuentran en el planeta en sus diferentes estados de agregación. Un mineral es un sólido inorgánico de origen natural, que presenta una composición química definida. Los minerales aportan al ser humano los elementos químicos imprescindibles para sus actividades industriales.

El estudio de los minerales se puede dividir en seis grandes grupos:

  • Mineralogía general: estudia la estructura, cristalografía, y las propiedades de los minerales.
  • Mineralogía determinativa: aplica las propiedades fisicoquímicas y estructurales a la determinación de las especies minerales.
  • Mineralogénesis: estudia las condiciones de formación de los minerales, de qué manera se presentan los yacimientos en la naturaleza y las técnicas de explotación.
  • Mineralogía descriptiva: estudia los minerales y los clasifica sistemáticamente según su estructura y composición.
  • Mineralogía económica: desarrolla las aplicaciones de la materia mineral; como su utilidad económica, industrial, gemológica, etcétera.
  • Mineralogía topográfica: estudia los yacimientos minerales de una región o país determinado, describiendo las especies presentes y también los hechos culturales e históricos asociados con ellos y con su explotación.

Por tanto, cualquier mineral, por ejemplo el carbono, puede cristalizar en diferentes estructuras (véase cristalografía) mediante el sistema cúbico; en este caso se le denomina diamante, o si cristaliza en el sistema hexagonal, conforma el grafito. Basta su apariencia para reconocer que son dos minerales diferentes, aunque es necesario un estudio más profundo para comprender que poseen la misma composición química.

También se encuentran varios minerales que pueden presentar dualidad en su comportamiento y a estos se los denomina mineraloides. Una observación importante es el caso del mercurio que debido a la disposición de sus átomos es un mineraloide.

PaleontologíaEditar

 
Recreación de la cabeza de un dinosaurio basada en sus restos fósiles.

La paleontología (del griego «παλαιος» palaios = antiguo, «οντο» onto = ser, «-λογία» -logía = tratado, estudio, ciencia) es la ciencia natural que estudia e interpreta el pasado de la vida sobre la Tierra a través de los fósiles.[31]​ Se encuadra dentro de las ciencias naturales, posee un cuerpo de doctrina propio y comparte fundamentos y métodos con la geología y la biología con las que se integra estrechamente. Se subdivide en paleobiología, tafonomía y biocronología,[32]​ y aporta información necesaria a otras disciplinas (estudio de la evolución de los seres vivos, bioestratigrafía, paleogeografía o paleoclimatología, entre otras).

Entre sus objetivos están, además de la reconstrucción de los seres vivos que vivieron en el pasado, el estudio de su origen, de sus cambios en el tiempo (evolución y filogenia), de las relaciones entre ellos y con su entorno (paleoecología, evolución de la biosfera), de su distribución espacial y migraciones (paleobiogeografía), de las extinciones, de los procesos de fosilización (tafonomía) o de la correlación y datación de las rocas que los contienen (bioestratigrafía).

La paleontología permite entender la actual composición (biodiversidad) y distribución de los seres vivos sobre la Tierra (biogeografía) —antes de la intervención humana—, ha aportado pruebas indispensables para la solución de dos de las más grandes controversias científicas del pasado siglo, la evolución de los seres vivos y la deriva de los continentes, y, de cara a nuestro futuro, ofrece herramientas para el análisis de cómo los cambios climáticos pueden afectar al conjunto de la biosfera.

PetrologíaEditar

La petrología (del griego Πέτρος, petros, piedra; y λόγος, logos, estudio) es la rama de la geología que se ocupa del estudio de las rocas, de sus propiedades físicas, químicas, mineralógicas, espaciales y cronológicas, de las asociaciones rocosas y de los procesos responsables de su formación. Es considerada una de las principales ramas de la geología.

El estudio de la petrología de sedimentos y de rocas sedimentarias se conoce como petrología sedimentaria. La petrografía, disciplina relacionada, trata de la descripción y las características de las rocas cristalinas determinadas por examen microscópico con luz polarizada.

La petrología se encarga de tres tipos de rocas específicamente. La primera y más abundante de todas se basa en estudio de las rocas ígneas que deben su origen al enfriamiento lento del magma en el interior de la Tierra (rocas ígneas intrusivas) o a de la lava expulsada por los volcanes (rocas ígneas extrusivas). El segundo tipo son las rocas sedimentarias que se originan por la erosión, desgaste de las rocas por el viento, agua o hielo. El tercer tipo son las rocas metamórficas que se forman cuando los tipos anteriores se ven sometidos a elevadas presiones y temperatura en el interior de la Tierra.

SedimentologíaEditar

La sedimentología es la rama de la geología que se encarga de estudiar los procesos de formación, transporte y deposición de material que se acumula como sedimento en ambientes continentales y marinos y que eventualmente forman rocas sedimentarias. Trata de interpretar y reconstruir los ambientes sedimentarios del pasado. Se encuentra estrechamente ligada a la estratigrafía, si bien su propósito es el de interpretar los procesos y ambientes de formación de las rocas sedimentarias y no el de describirlas como en el caso de aquella.

SismologíaEditar

 
Mapa de la actividad tectónica global.
 
Volcán Tungurahua 2011 (aún activo), julio de 2015. El Instituto Geofísico, EPN monitorea actividad Volcán Tungurahua.[33]

La sismología o seismología (del griego σεισμός (seismós) que significa "sismo" y λογία (logía), "estudio de") es una rama de la geofísica que se encarga del estudio de terremotos y la propagación de las ondas elásticas (sísmicas) que se generan en el interior y la superficie de la Tierra, asimismo que de las placas tectónicas. Estudiar la propagación de las ondas sísmicas incluye la determinación del hipocentro (o foco), la localización del sismo y el tiempo que este haya durado. Un fenómeno que también es de interés es el proceso de ruptura de rocas, ya que este es causante de la liberación de ondas sísmicas.

Sus principales objetivos son:

  • El estudio de la propagación de las ondas sísmicas por el interior de la Tierra a fin de conocer su estructura interna;
  • El estudio de las causas que dan origen a los temblores;
  • La prevención del daño sísmico;
  • Alertar a la sociedad sobre los posibles daños en la región determinada.

La sismología incluye, entre otros fenómenos, el estudio de maremotos y marejadas asociadas (tsunamis) y vibraciones previas a erupciones volcánicas. En general los terremotos se originan en los límites de placas tectónicas y son producto de la acumulación de tensiones por interacciones entre dos o más placas. Las placas tectónicas (placas litosféricas) son una unidad estructural rígida, con un espesor de 100 km aproximadamente, que constituye la capa esférica superficial de la tierra, según la teoría de la tectónica de placas[34]​ (esta teoría explica la particularísima distribución, en zonas alargadas y estrechas, de terremotos, volcanes y cordilleras; así mismo la causa de la deriva continental).[35]

La interpretación de los sismogramas que se registran al paso de las ondas sísmicas permiten estudiar el interior de la tierra. Existen 3 tipos de ondas sísmicas. Las ondas P y L (son las productoras de Tsunamis) se propagan a través del globo, y las primeras, longitudinales y de comprensión-descomprensión, lo hacen en todos los medios. Las ondas S, transversales a la dirección en que se propagan, sólo se transmiten en medios sólidos.[36]

TectónicaEditar

 
Deformación mesotectónica de los estratos ordovícicos de cuarcita del Parque nacional de Monfragüe, Cáceres, España.

La tectónica es la rama de la geología que estudia las estructuras geológicas producidas por deformación de la corteza terrestre, las que las rocas adquieren después de haberse formado, así como los procesos que las originan.

Se analiza la mecánica y la dinámica de la litosfera, para dar explicación a las deformaciones (pliegues y fallas) y formaciones estructurales como son las placas tectónicas. Estudia las megadeformaciones a niveles corticales en ambientes continentales y oceánicos para lograr entender la formación de la Tierra y cómo evoluciona constantemente. El estudio de la tectónica se diversifica en otras áreas de la ciencia como el paleomagnetismo, la sismología o la termodinámica interna de la Tierra.

VulcanologíaEditar

 
Erupción del volcán Stromboli
La vulcanología (de la palabra latina Vulcānus, Vulcano, el dios romano del fuego) es la rama de la geología que estudia los volcanes, la lava, el magma y otros fenómenos geológicos relacionados.

Los vulcanólogos visitan frecuentemente los volcanes terrestres, en especial los que están activos, para observar las erupciones volcánicas, recoger restos volcánicos como la tephra (ceniza o piedra pómez), rocas y muestras de lava.

Una vía de investigación mayoritaria es la predicción de las erupciones; actualmente no hay manera de realizar dichas predicciones, pero prever las erupciones volcánicas, al igual que prever los terremotos, puede llegar a salvar muchas vidas.

A raíz de la exploración espacial se observó que existe vulcanismo de baja temperatura en los cuerpos helados como Encelado, por citar un ejemplo. Este vulcanismo presenta el mismo fenómeno, un material que se funde por una diferencia de temperatura y es eyectado a la superficie. Por lo que la vulcanología moderna, se refiere a una fuente de calor y un material capaz de fundirse, de tal manera que se enfoca en el estudio del material eyectado, estructuras que forman y los procesos e interacciones asociadas a la formación y evolución del fundido, así como al origen de la fuente de calor.

Departamentos o cátedras de la carrera de ciencias geológicasEditar

La geología comprende distintas ciencias o disciplinas, que configuran los planes formativos educativos universitarios o profesionales. Debido a la gran diversidad de disciplinas o ciencias geológicas, estas se agrupan en distintas unidades de enseñanza independientes, donde se lleva a cabo una mejor organización modular de la propia enseñanza e investigación de la Geología sobre las distintas ciencias que comprende. Una de las estructuras generales en como se componen estos departamentos, es:

GeoéticaEditar

 
Geólogo recogiendo una muestra de lava en el volcán Kilauea.
La geoética trata de las relaciones entre el hombre y su entorno abiótico —en el ámbito de las ciencias de la Tierra y planetarias— desde un punto de vista ético y del comportamiento deontológico de los profesionales relacionados con las mismas. Se ocupa de las prácticas científicas, técnicas, educativas, sociales y culturales ligadas a la sostenibilidad, desarrollo, geodiversidad, patrimonio geológico, explotación racional de los recursos minerales, responsabilidad en la predicción y mitigación de riesgos naturales, entre otras, tanto en la Tierra como, con vistas al futuro, en otros cuerpos espaciales.[37][38]

GeólogosEditar

 
Herramientas de geólogo: martillo y lupa.

Un geólogo es una persona especialista y profesional en el estudio, observación o experimentación relacionados con la Tierra, su composición, estructura, dinámica, origen y evolución.

Un geólogo se destaca por poseer las siguientes competencias:

  • Realiza estudios petrográficos y análisis químicos para determinar el origen, composición y evolución de las rocas, aplicando los conocimientos adquiridos en su formación.
  • Establece la Estratigrafía de una región y análisis estructural para establecer el orden de depositación de las unidades geológicas en una región y para definir tanto las macro-estructuras como las microestructuras, con el fin de predecir la evolución tectónica de dicha región.
  • Elabora la Geomorfología, Morfometría y Morfotectónica para establecer las formas del relieve de una región, y los factores que las formaron que le permitan identificar las áreas de mayor energía, límites de cuencas, erodabilidad y desarrollar su actividad profesional con un sentido de servicio a la sociedad y con apego a su calidad y apego profesional.
  • Efectúa estudios geoquímicos y geofísicos para determinar tanto el contenido de especies iónicas en aguas superficiales, subterráneas, hidrotermales, como la composición química de rocas, y sus aplicaciones en evolución geoquímica de aguas naturales y en prospección mineral. Determina las propiedades físicas de la corteza terrestre, el profesional se mantiene crítico ante el avance científico y el desarrollo de su entorno.
  • Diseña estudios de prospección y exploración de minerales realiza análisis para determinar áreas con posibilidades de depósitos minerales, y la cuantificación. Las técnicas y las determinaciones de parámetros son: muestras tomadas, kilómetros cuadrados explorados, metros perforados, eficiencia de la perforación, ley de las muestras ensayadas y costos unitarios.
  • Elabora estudios de aguas subterráneas y calidad del agua, define el proceso o procesos económicos necesarios para definir los depósitos, extraer y administrar los recursos hídricos del subsuelo con respeto así mismo, a los demás y al medio ambiente.
  • Diseña estudios geotécnicos para conocer las propiedades físicas de suelos y rocas para determinar zonas de riesgo o problemas de subsidencia y fallamiento activo.
  • Realiza la planeación, diseño y desarrollo de proyectos geológicos para planear, diseñar y desarrollar estudios de geología general y aplicada, las cuales resolverán problemas específicos o se realizarán tareas determinadas dentro de un proceso u operación unitarias.[39]

Véase tambiénEditar

ReferenciasEditar

  1. Real Academia Española y Asociación de Academias de la Lengua Española (2014). «geo-». Diccionario de la lengua española (23.ª edición). Madrid: Espasa. ISBN 978-84-670-4189-7. 
  2. Real Academia Española y Asociación de Academias de la Lengua Española (2014). «-logía». Diccionario de la lengua española (23.ª edición). Madrid: Espasa. ISBN 978-84-670-4189-7. 
  3. Piera, Juan Vilanova y (1876). La creacion: historia natural, escrita por una sociedad de naturalistas. Montaner y Simon. Consultado el 11 de febrero de 2018. 
  4. Alvarez & Leitao, 2010. The neglected early history of geology: The Copernican Revolution as a major advance in understanding the Earth. Geology, March 2010, v. 38, p.231-234,
  5. Romm, James (3 de febrero de 1994), «A New Forerunner for Continental Drift», Nature 367 (6462): 407-408, Bibcode:1994Natur.367..407R, doi:10.1038/367407a0. 
  6. Redfern, Martin (2013-03). 50 cosas que hay que saber sobre la Tierra. Grupo Planeta (GBS). ISBN 9788434406391. Consultado el 11 de febrero de 2018. 
  7. Del Instante de la Creacion a la Formacion Y Estructura de la Tierra. UNAM. ISBN 9789703226146. Consultado el 11 de febrero de 2018. 
  8. a b Lleó, Atanasio (4 de noviembre de 2015). El Sol y la Tierra en evolución: La hermandad de todos los seres vivos en el Planeta Tierra. UPM Press. ISBN 9788494085024. Consultado el 11 de febrero de 2018. 
  9. Hazen, Roberto (2 de febrero de 2015). La Historia de la Tierra: Los primeros 4500 millones de años del polvo estelar al planeta viviente. Editorial Oceano. ISBN 9786077353294. Consultado el 11 de febrero de 2018. 
  10. Curtis, Helena; Schnek, Adriana (2006). Invitación a la biología. Ed. Médica Panamericana. ISBN 9789500604475. Consultado el 11 de febrero de 2018. 
  11. Feinstein, Alejandro (1999). Objetivo: Universo. Astronomía. Ediciones Colihue SRL. ISBN 9789505816569. Consultado el 11 de febrero de 2018. 
  12. Biodiversidad, conservación y desarrollo. Ediciones Uniandes-Universidad de los Andes. 2012. ISBN 9789586958233. Consultado el 11 de febrero de 2018. 
  13. Canen, Alberto (17 de junio de 2013). 1ed El Obervador del Genesis: Del relato poetico a la explicacion cientifica. Alberto Canen. ISBN 9789873324376. Consultado el 11 de febrero de 2018. 
  14. Benito, David (7 de febrero de 2017). Historias de la Prehistoria: Lucy, el hobbit de Flores y otros ancestros. La Esfera de los Libros. ISBN 9788490609194. Consultado el 11 de febrero de 2018. 
  15. Tozzi, Claudio (2009). BIIOSystem Lifestyle Revolution. Lulu.com. ISBN 9781446733837. Consultado el 11 de febrero de 2018. 
  16. Tozzi, Claudio (2009). BIIOSystem Lifestyle Revolution. Lulu.com. ISBN 9781446733837. Consultado el 11 de febrero de 2018. 
  17. López-Acevedo Cornejo, Victoria (1993). «Introducción». Modelos en Cristalografía. Pág. 9: Varona. p. 233. ISBN 8460476626. 
  18. «Año Internacional de la Cristalografía».  Organización de las Naciones Unidas
  19. Union Internationale de Spéléologie. «UIS Commissions and Working Groups». https://www.uis-speleo.org/. Consultado el 7 de agosto de 2018. 
  20. Weller, J. M. (1960). Stratigraphic principles and practice. Nueva York: Harper and Brothers. 725 pág.
  21. Solans Huguet, Joaquín (1984). Gemas de ayer, de hoy y de mañana: introducción al estudio de las piedras preciosas. Barcelona: Edicions Universitat Barcelona. p. 35. ISBN 9788475281353. Consultado el 28 de marzo de 2014. 
  22. Mineralienatlas, definición de gemología (en alemán).
  23. USGS. «Age of the Earth» (en inglés). Consultado el 11 de abril de 2014. 
  24. Anguita Virella, F. (1988). "Origen e historia de la Tierra". Ed. Rueda, SL. ISBN 84-7207-052-2.
  25. Martínez Frías, J. et al. (2008). "La Geología en la Exploración Planetaria". Geotemas, 10: 1621-1624. ISSN 1567-5172.
  26. Agueda, J.; Anguita, F.; Araña, V.; López Ruiz, J. y Sánchez de la Torre, L. (1977). Geología. Madrid: Editorial Rueda. p. 31. ISBN 84-7207-009-3. 
  27. a b Error en la cita: Etiqueta <ref> no válida; no se ha definido el contenido de las referencias llamadas Albarede
  28. Error en la cita: Etiqueta <ref> no válida; no se ha definido el contenido de las referencias llamadas cosmo
  29. Mijailov, L., 1985, ''Hidrogeología.'' Editorial Mir. Moscú, Rusia. p. 285
  30. Union Internationale de Spéléologie. «UIS Commissions and Working Groups». https://www.uis-speleo.org/. Consultado el 7 de agosto de 2018. 
  31. López Martínez, N. y Truyols Santonja, J. (1994). Paleontología. Conceptos y métodos. Col. Ciencias de la vida 19. Síntesis. p. 334. ISBN 84-7738-249-2. 
  32. Fernández López, S. R. (2000). Temas de Tafonomía. Departamento de Paleontología, Universidad Complutense de Madrid. 167 págs.
  33. http://www.igepn.edu.ec/ El Instituto Geofísico, EPN monitorea actividad Volcán Tungurahua y otros Volcanes en las montañas de los Andes de Ecuador y en las Islas Galápagos.
  34. Datos tomados de: GARCÍA, Tomás, et. al., Mi pequeño Larousse Ilustrado, Ediciones Larousse, 2007, 13° ed., p. 803
  35. Datos tomados de: BOSCH, María Ángeles, et. al., Larousse Temático Universal Volumen 1, Ediciones Larousse, 2002, 2° ed., p.35
  36. Datos tomados de: BOSCH, María Ángeles, et. al., Larousse Temático Universal Volumen 1, Ediciones Larousse, 2002, 2° ed., p.37
  37. González, J.L. y Martínez-Frías, J. (2011). «Geoética: un reto para la deontología profesional». Tierra y Tecnología, 40: 10-14
  38. Martínez-Frías, J., González, J.L. y Rull Pérez, F. (2011). «Geoethics and Deontology: From fundamentals to applications in Planetary Protection». Episodes, 34(4): 257-262
  39. «Ingeniero Geólogo». www.ugto.mx (en inglés). Consultado el 21 de mayo de 2017. 

BibliografíaEditar

Enlaces externosEditar