Distribución binomial

frecuencia con la que se da un suceso en un proceso dicotómico

En estadística, la distribución binomial o distribución binómica es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de ensayos de Bernoulli independientes entre sí con una probabilidad fija de ocurrencia de éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, solo dos resultados son posibles, a uno de estos se le denomina “éxito” y tiene una probabilidad de ocurrencia y al otro se le denomina “fracaso” y tiene una probabilidad .

Distribución binomial
Función de masa de probabilidad
Función de probabilidad
Función de distribución acumulada
Función de distribución de probabilidad
Parámetros número de ensayos (entero)
probabilidad de éxito (real)
Dominio
Función de probabilidad (fp)
Función de distribución (cdf)
Media
Mediana Uno de [1]
Moda
Varianza
Coeficiente de simetría
Curtosis
Entropía
Función generadora de momentos (mgf)
Función característica

DefiniciónEditar

Función de ProbabilidadEditar

En general, una variable aleatoria discreta   tiene una distribución binomial con parámetros   y   con   y escribimos   si su función de probabilidad está dada por

 

para  , siendo

 

las combinaciones de   en  .

Función de Distribución AcumuladaEditar

La función de distribución acumulada de una variable aleatoria   está dada por

 

También puede ser expresada en términos de la función beta incompleta como

 

que es equivalente a la función de distribución acumulada de la distribución F.

La distribución binomial es la base del test binomial de significación estadística.

Experimento binomialEditar

Existen muchas situaciones en las que se presenta una experiencia binomial. Cada uno de los experimentos es independiente de los restantes (la probabilidad del resultado de un experimento no depende del resultado del resto). El resultado de cada experimento ha de admitir sólo dos categorías (a las que se denomina éxito y fracaso). El valor de ambas posibilidades ha de ser constante en todos los experimentos, y se denotan como   y   respectivamente o como   y   de forma alternativa.

Se designa por   a la variable que mide el número de éxitos que se han producido en los   experimentos.

Cuando se dan estas circunstancias, se dice que la variable   sigue una distribución de probabilidad binomial.

EjemploEditar

Supongamos que se lanza un dado 51 veces y queremos calcular la probabilidad de que el número 3 salga 20 veces.

En este problema un ensayo consiste en lanzar el dado una vez. Consideramos un éxito si obtenemos un 3 pero si no sale 3 lo consideramos como un fracaso. Defínase   como el número de veces que se obtiene un 3 en 51 lanzamientos.

En este caso tenemos   por lo que la probabilidad buscada es  

 

PropiedadesEditar

Si   es una variable aleatoria discreta tal que   entonces

  •  
  •  

La primera de ellas es fácil de demostrar, por definición de Esperanza

 

el primer término de la suma, es decir, para   el término vale cero por lo que podemos iniciar la suma en  

 

Dado que

 

para  .

Reemplazando lo anterior en la expresión de   obtenemos

 

Haciendo el cambio de indice   obtenemos

 

Finalmente por la fórmula de Newton (Teorema del binomio)

 

Obtenemos

 .

Distribuciones RelacionadasEditar

Suma de BinomialesEditar

Si   y   son variables aleatorias independientes con la misma probabilidad   entonces la variable aleatoria   también es una variable aleatoria con distribución binomial con parámetros   y  , es decir  

 

Distribución BernoulliEditar

Si   son   variables aleatorias independientes e idénticamente distribuidas tales que   entonces

 

Lo anterior es equivalente a decir que la distribución Bernoulli es un caso particular de la distribución Binomial cuando  , es decir, si   entonces  .

Distribuciones limitantesEditar

Teorema límite de PoissonEditar

Si   y   es tal que el producto entre ambos parámetros tiende a  , entonces la distribución de la variable aleatoria binomial tiende a una distribución de Poisson de parámetro  .

Teorema de De Moivre-LaplaceEditar

Si   es una variable aleatoria con media   y varianza   entonces

 

conforme  , esta aproximación es buena si   y  .

Propiedades reproductivasEditar

Si   son variables aleatorias independientes tales que   con   entonces

 

Véase tambiénEditar

ReferenciasEditar

  1. Hamza, K. (1995). The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions. Statist. Probab. Lett. 23 21–25.

Enlaces externosEditar