Límite de una sucesión

concepto de análisis matemático
(Redirigido desde «Convergencia (matemáticas)»)

El límite de una sucesión es uno de los conceptos más antiguos del análisis matemático. Es el valor al que tienden los términos de la sucesión cuando toma valores muy grandes.[1]​ Se representa mediante:

Representación gráfica de la sucesión:

y se lee límite cuando tiende a infinito de .[1]

Este concepto está estrechamente ligado al de convergencia. Una sucesión de elementos de un conjunto es convergente si y solo si en el mismo conjunto existe un elemento (al que se le conoce como límite) al cual la sucesión se aproxima tanto como se desee a partir de un momento dado. Si una sucesión tiene límite, se dice que es una sucesión convergente, y que la sucesión converge o tiende al límite. En caso contrario, la sucesión es divergente o alternada.[2]

La definición significa que finalmente todos los elementos de la sucesión se aproximan tanto como queramos al valor límite. La condición que impone que los elementos se encuentren arbitrariamente cercanos a los elementos subsiguientes no implica, en general, que la sucesión tenga un límite (véase sucesión de Cauchy).

Qué se entiende por próximo da lugar a distintas definiciones de límite dependiendo del conjunto donde se ha definido la sucesión (véase distancia).

Límite de una sucesión de números reales

editar

Definición formal

editar

Una sucesión de números reales   converge y tiene límite   cuando   tiende a   si para todo  , existe un   a partir del cual, si  , la distancia de   a   es menor que  , es decir:

 .

Ejemplos

editar
  • La sucesión 1/1, 1/2, 1/3, 1/4, ... converge al límite 0.
  • La sucesión 1, -1, 1, -1, 1, ... es oscilante.
  • La sucesión 1/2, 1/2 + 1/4, 1/2 + 1/4 + 1/8, 1/2 + 1/4 + 1/8 + 1/16, ... converge al límite 1.
  • Si a es un número real con valor absoluto |a| < 1, entonces la sucesión an posee límite 0. Si 0 < a ≤ 1, entonces la sucesión a1/n posee límite 1.
  •  
  •  
  •  

Propiedades de sucesiones convergentes

editar
  • Toda sucesión convergente tiende a un único valor, lo que se conoce como la unicidad del límite.
  • Si todos los términos de una sucesión son iguales a un mismo valor, entonces el límite es ese valor.
  • Si una sucesión   tiene límite positivo, existe un término a partir del cual todos los términos de la sucesión son positivos.
  • Si una sucesión   tiene límite negativo, existe un término a partir del cual los términos de la sucesión son negativos.
  • Si una sucesión   converge a cero, no se puede asegurar nada acerca del signo de cada uno de los términos de la sucesión.
  • Si una sucesión   tiende a menos infinito y   entonces   tiende a 0.
  • Si la sucesión (xn) tiene límite entonces es acotada; esto es, hay un número positivo h tal que |xn|   h para cualquier n.
  • Cuando dos sucesiones tienen límite, se tiene que la suma (diferencia) de tales sucesiones tiene límite que es igual a la suma (diferencia) de los respectivos límites de las sucesiones.
  • En el caso de que dos sucesiones tengan límites entonces su producto también tiene límite, que es igual producto de los respectivos límites.
  • Cuando cada término de una sucesión se multiplica por una constante k, el límite de este producto sucesión es igual al producto de k por el límite de la sucesión.
  • Si dos sucesiones son convergentes, siendo la segunda de ellas sin ningún término nulo y límite ≠ 0, entonces el cociente de la primera entre la segunda tiene límite, que es igual al cociente del límite de la primera entre el límite de la segunda sucesión.
  • Si una sucesión es monótona y acotada, entonces converge. Es la condición suficiente para la convergencia de una sucesión, que se conoce también como el Teorema de Weierstrass. Esta proposición es sobre la existencia del límite de una sucesión, pero no provee método alguno para obtener tal límite.
  • Para cualquiera sucesión convergente ( no necesariamente monótona) es válida la igualdad:  

Límite de una sucesión compleja

editar

Se dice que la sucesión converge hacia un complejo   si y solo si

 

Nótese que es la misma definición que para  , con módulo en lugar del valor absoluto.

Se puede escribir

  o más simplemente, si no hay ambigüedad  

Las sucesiones complejas convergentes poseen las mismas propiedades que las sucesiones reales, excepto las de relación de orden: el límite es único, una sucesión convergente tiene módulo acotado, toda sucesión de Cauchy converge (en efecto,   es también completo).

Ejemplos

editar
 
Diagrama de un hexágono y un pentágono circunscritos fuera de un círculo. La sucesión dada por los perímetros de polígonos regulares de n lados que circunscriben el círculo unitario tiene un límite igual al perímetro del círculo, es decir,  . La sucesión correspondiente para polígonos inscritos tiene el mismo límite.
  • Sucesiones en   o  
  • Sucesiones en  
  • Sucesiones en el espacio  
  • Sucesiones en el espacio  
  • Sucesiones en el espacio de las funciones continuas  

Tipos de convergencia

editar

Convergencia puntual

editar

El concepto de convergencia puntual es uno de los varios sentidos en los cuales una sucesión de funciones puede converger a una función particular.

Una sucesión de funciones   definidas en un conjunto no vacío   con valores en un espacio métrico   converge puntualmente a una función   si

 

para cada   fijo. Esto significa que

(5) 

La sucesión de funciones   con   converge puntualmente a la función   puesto que

 

para cada   fijo.

Convergencia uniforme

editar

Una sucesión de funciones   definidas en un conjunto no vacío   con valores en un espacio métrico   converge uniformemente a una función   si para todo   existe un natural   (que depende de  ) tal que

 

para todo   y todo  . Es decir,

(6) 

El concepto de convergencia uniforme es un concepto más fuerte que el de convergencia puntual. En (5),   puede depender de   y de   mientras que en (6),   sólo puede depender de  . Así, toda sucesión que converge uniformemente, converge puntualmente. El enunciado recíproco es falso, y un contraejemplo clásico lo constituyen las sucesión de funciones   definidas por  . Esta sucesión converge puntualmente a la función

 

ya que

 

mientras que   Sin embargo esta sucesión no converge uniformemente, pues para   no existe un   que satisfaga (6).

De especial interés es el espacio de las funciones continuas   definidas sobre un compacto   En este caso, una sucesión de funciones   converge uniformemente a una función   si, y sólo si, converge en la norma del sup, i.e.,

 

Sucesiones en otros espacios matemáticos

editar

Una sucesión de elementos   de un espacio métrico   converge a un elemento   si para todo número   existe un entero positivo   (que depende de  ) tal que

(1) 

Intuitivamente, esto significa que los elementos   de la sucesión se pueden hacer arbitrariamente cercanos a   si   es suficientemente grande, ya que   determina la distancia entre   y  . A partir de la definición es posible demostrar que si una sucesión converge, lo hace hacia un único límite.

La definición se aplica en particular a los espacios vectoriales normados y a los espacios con producto interno. En el caso de un espacio normado   la norma   induce la métrica   para cada  ; en el caso de un espacio con producto interno   el producto interno   induce la norma   para cada  

Convergencia uniforme sobre compactos

editar

Convergencia débil

editar

Una sucesión se dice que converge débilmente a   o en sentido débil si para toda funcional lineal  ,   converge a  .

Por ejemplo la sucesión   desde   hasta infinito converge débilmente a cero. Pues:
 
Todo esto, pues   es lineal.

Límite en un espacio topológico

editar

Una generalización de esta relación, para una sucesión de puntos   en un espacio topológico T:

Si   se dice que L es un límite de esta sucesión y se escribe
 
si y solo si para todo entorno S de L existe un número natural N tal que   para todo  

De forma intuitiva, suponiendo que se tiene una sucesión de puntos (por ejemplo un conjunto infinito de puntos numerados utilizando los números naturales) en algún tipo de objeto matemático (por ejemplo los números reales o un espacio vectorial) que admite el concepto de entorno (en el sentido de "todos los puntos dentro de una cierta distancia de un dado punto fijo"). Un punto L es el límite de la sucesión si para todo entorno que se defina, todos los puntos de la sucesión (con la posible excepción de un número finito de puntos) están próximos a L. Esto puede ser interpretado como si hubiera un conjunto de esferas de tamaños decrecientes hasta cero, todas centradas en L, y para cualquiera de estas esferas, solo existiera un número finito de números fuera de ella.

Es posible también que una sucesión en un espacio topológico general, pueda tener varios límites diferentes,[cita requerida] pero una sucesión convergente posee un único límite si T es un espacio de Hausdorff, por ejemplo la recta real (extendida), el plano complejo, sus subconjuntos (R, Q, Z...) y productos cartesianos (Rn...).

Teoría de la probabilidad

editar

En teoría de la probabilidad existen diferentes nociones de convergencia: convergencia de funciones medibles, convergencia en distribución y límites de variables aleatorias.

Historia

editar

El filósofo griego Zenón de Elea es famoso por formular sus paradojas que implican procesos limitantes.

Leucipo de Mileto, Demócrito, Antífono, Eudoxo de Cnido y Arquímedes desarrollaron el método de agotamiento, que utiliza una secuencia infinita de aproximaciones para determinar un área o un volumen. Arquímedes logró resumir lo que hoy se llama una serie geométrica.

Grégoire de Saint-Vincent dio la primera definición de límite (término) de una serie geométrica en su obra Opus Geometricum (1647): "El término de una progresión es el final de la serie, que ninguna progresión puede alcanzar, incluso si ella continúa en el infinito, pero al que puede acercarse más que un segmento dado."[3]

Pietro Mengoli anticipó la idea moderna de límite de una secuencia con su estudio de cuasiproporciones en Geometriae speciosae elementa (1659). Usó el término cuasi infinito para ilimitado y cuasi nulo para una función de desaparición.

Newton trató las series en sus obras Análisis con series infinitas (escrito en 1669, distribuido en manuscrito, publicado en 1711), Método de las fluxiones y series infinitas (escrito en 1671, publicado en traducción al inglés en 1736, original en latín publicado mucho más tarde) y Tractatus de Quadratura Curvarum (escrito en 1693, publicado en 1704 como apéndice de su Optiks). En este último trabajo, Newton considera la expansión binomial de  , que luego linealiza tomando el límite cuando   tiende a  .

En el siglo XVIII, matemáticos como Euler lograron sumar algunas series divergentes deteniéndose en el momento adecuado; no les importaba mucho si existía un límite, siempre que pudiera calcularse. A finales de siglo, Lagrange en su Théorie des fonctions analytiques (1797) opinó que la falta de rigor impedía un mayor desarrollo del cálculo. Gauss en su estudio de series hipergeométricas (1813) investigó rigurosamente por primera vez las condiciones bajo las cuales una serie convergía hasta un límite.

La definición moderna de límite (para cualquier   existe un índice   de modo que...) fue dada por Bernard Bolzano (Der binomische Lehrsatz, Praga 1816, que fue poco notada en la época), y por Karl Weierstrass en la década de 1870.

Véase también

editar

Referencias

editar
  1. a b Arias Cabezas, José María; Maza Sáez, Ildefonso (2008). «Aritmética y Álgebra». En Carmona Rodríguez, Manuel; Díaz Fernández, Francisco Javier, eds. Matemáticas 1. Madrid: Grupo Editorial Bruño, Sociedad Limitada. p. 19. ISBN 9788421659854. 
  2. «¿Cuando una sucesión es convergente o divergente?». 
  3. Van Looy, H. (1984). A chronology and historical analysis of the mathematical manuscripts of Gregorius a Sancto Vincentio (1584–1667). Historia Mathematica, 11(1), 57-75.

Enlaces externos

editar